Proofs (2) Strict implication as Relevant Entailment 2023-2 Modal Logic (Segment 3) Q) How might one use relevant logic to interpret C. I. Lewis’ strict implication as relevant entailment where we have:Give proofs of the wffs K and T in Lewis’s S1, i.e., prove:1. L(p ⊃ q) : ⊃: Lp ⊃ Lq2. Lp ⊃ p Logic/Relevance Logic 2024.01.14
Proofs (1) Routley-Meyer Semantics for Relevant Logic 2023-2 Modal Logic (Segment 3) Q) Routley-Meyer Semantics for Relevant Logic has this: Prove (using the semantics) the following:1. A & B .–▶. A v B 2. ¬¬A ◀– –▶ A 3. ¬(A & B) ◀– –▶. ¬A v ¬B 4. ¬A –▶ B .–▶. ¬B –▶ A Logic/Relevance Logic 2024.01.14