Logic/Modal Logic

Proofs (3) Quantified Modal Logic

Soyo_Kim 2024. 11. 8. 08:49

2023-2 Modal Logic (Segment 2)

 

Q) Quantification theory may be formalized this way: 

Prove the following in the systems indicated.

1. ├ L(∀x)ϕx . ⊃. (∀x)Lϕx

2. ├ β (∀x)Lϕx . ⊃. L(∀x)ϕx (Recall that system β is T + p ⊃ LMp. )

3. ├ M(∃x)ϕx . ⊃. (∃x)Mϕx (The system is QML + (∀x)Lϕx . ⊃. L(∀x)ϕx)

4. ├ (∀x)Lα ⊃ L(∀x)α (The system is QML+ (∀x)L(α ⊃ β) .⊃. L((∀x)α ⊃ (∀x)β)

 

'Logic > Modal Logic' 카테고리의 다른 글

Modal Conjunctive Normal Form (1)  (0) 2024.11.08
Derived Rules  (0) 2024.11.08
Proofs (2) Basic Modal Propositional Logic  (0) 2024.11.08
Proofs (1) Basic Modal Propositional Logic  (0) 2024.11.08
The Tableau Method (3) Quantified Modal Logic  (0) 2024.01.14