2023-2 Modal Logic (Segment 2)
Q) Quantification theory may be formalized this way:
Prove the following in the systems indicated.
1. ├ L(∀x)ϕx . ⊃. (∀x)Lϕx
2. ├ β (∀x)Lϕx . ⊃. L(∀x)ϕx (Recall that system β is T + p ⊃ LMp. )
3. ├ M(∃x)ϕx . ⊃. (∃x)Mϕx (The system is QML + (∀x)Lϕx . ⊃. L(∀x)ϕx)
4. ├ (∀x)Lα ⊃ L(∀x)α (The system is QML+ (∀x)L(α ⊃ β) .⊃. L((∀x)α ⊃ (∀x)β)
'Logic > Modal Logic' 카테고리의 다른 글
Modal Conjunctive Normal Form (1) (0) | 2024.11.08 |
---|---|
Derived Rules (0) | 2024.11.08 |
Proofs (2) Basic Modal Propositional Logic (0) | 2024.11.08 |
Proofs (1) Basic Modal Propositional Logic (0) | 2024.11.08 |
The Tableau Method (3) Quantified Modal Logic (0) | 2024.01.14 |